Time-Fractional Differential Equations with an Approximate Solution
نویسندگان
چکیده
This paper shows how to use the fractional Sumudu homotopy perturbation technique (SHP) with Caputo operator (CF) solve time linear and nonlinear partial differential equations. The transform (ST) (HP) are combined in this approach. In definition, derivative is defined. general, method straightforward execute yields good results. There some examples offered demonstrate technique's validity use.
منابع مشابه
Approximate Solution of Fuzzy Fractional Differential Equations
In this paper we propose a method for computing approximations of solution of fuzzy fractional differential equations using fuzzy variational iteration method. Defining a fuzzy fractional derivative, we verify the utility of the method through two illustrative examples.
متن کاملAn approximate method for solving fractional system differential equations
IIn this research work, we have shown that it is possible to use fuzzy transform method (FTM) for the estimate solution of fractional system differential equations (FSDEs). In numerical methods, in order to estimate a function on a particular interval, only a restricted number of points are employed. However, what makes the F-transform preferable to other methods is that it makes use of all poi...
متن کاملAnalytical-Approximate Solution for Nonlinear Volterra Integro-Differential Equations
In this work, we conduct a comparative study among the combine Laplace transform and modied Adomian decomposition method (LMADM) and two traditional methods for an analytic and approximate treatment of special type of nonlinear Volterra integro-differential equations of the second kind. The nonlinear part of integro-differential is approximated by Adomian polynomials, and the equation is reduce...
متن کاملAn Approximate Analytical Solution of Coupled Nonlinear Fractional Diffusion Equations
In recent years, fractional reaction-diffusion models have been studied due to their usefulness and importance in many areas of mathematics, statistics, physics, and chemistry. In a fractional diffusion equation, the second derivative in the spatial variable is replaced by a fractional derivative. The resulting solutions spread faster than classical solutions and may exhibit asymmetry, dependin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nigerian Society of Physical Sciences
سال: 2022
ISSN: ['2714-4704']
DOI: https://doi.org/10.46481/jnsps.2022.818